

 Navigation

 	
 index

 	
 next |

 	SMTFrontEnd 0.1 documentation

Welcome to SMTFrontEnd

This is a course project for Formal Methods. It aims at designing and implementing a lightweight front end for various SMT solvers. Currently, we are going to support Alt-Ergo and CVC4. All the original contents on this site are protected by the MIT License [http://opensource.org/licenses/MIT].

Contents

	CVC4
	Introduction

	Building

	Using

	Kinds of Expressions

	Built-in Atomic Types

	Theories

	AltErgo
	Introduction

	Building

	Using

	The SMT-LIB Language
	A Summary of SMT-LIB Logic 2.0

	Lexer Rules

	Parser Rules

	Examples

	Script File

	Test
	Benchmarks

	Testing Methods

	Results
	CVC4

	Alt-Ergo

	Comparison

	Integrating CVC4 & Alt-Ergo

	References
	Website Links

	Books

	Papers/Reports

Members

	Hanwen Wu:	[image: HW]

	Homepage:	http://steinwaywu.info/

	Email:	steinwaywhw AT gmail DOT com

	Wenxin Feng:	[image: WF]

	Homepage:	http://cs-people.bu.edu/wenxinf/

	Email:	wenxinf AT bu DOT edu

Milestones

This is a tracking table for the whole lifecycle. It is subject to change according to the actual situation.

	Ticket
	Task
	Status
	Assign

	1
	Collecting papers/reports/documentations for these projects
	Finished
	Hanwen/Wenxin

	2
	Investigating SMTLIB v2.0, CVC4, Alt-Ergo input languages
	Finished
	Wenxin/Hanwen

	3
	Investigating abstract syntax for those input language
within the bit-vectors and integer theories
	Finished
	Hanwen/Wenxin

	4
	Testing Alt-Ergo using SMTLIB v2.0
	Finished
	Hanwen

	5
	Testing CVC4 using SMTLIB v2.0
	Finished
	Wenxin

	6
	Testing Data Analysis
	Finished
	Wenxin/Hanwen

	7
	Implementing CVC4 & Alt-Ergo front end
	Finished
	Hanwen/Wenxin

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMTFrontEnd 0.1 documentation

CVC4

Introduction

CVC4, the fifth generation of Cooperating Validity Checker from NYU and U Iowa, is a DPLL solver with a SAT solver core and a delegation path to different decision procedure implementations, each in charge of solving formulas in some background theory. It works for first-order logics. It has implemented decision procedures for the theory of uninterpreted/free functions, arithmetic(integer, real, linear, non-linear), arrays, bit-vectors and datatypes. It uses a combination method based on Nelson-Oppen to cooperate different theories. Also, CVC4 supports quantifiers through heuristic instantiaionfootnote and has the ability to generate model. For both satisfiable(sat)/unsatisfiable(unsat) formulas, CVC4 can come up with the correct answer.

Building

Since ANTLR has been largely changed, the building process listed here [http://church.cims.nyu.edu/wiki/User_Manual#Building_CVC4_from_source] should be changed a little bit.

	Download source code from official links [http://cvc4.cs.nyu.edu/builds/src/].

	Following the building instruction [http://church.cims.nyu.edu/wiki/User_Manual#Building_CVC4_from_source] to build the CVC4.

	Enter contrib directory, use get-antlr-3.4 to get ANTLR.

Note

The get-antlr-3.4 file should be changed.
All the hyperlinks including “antlr.org” should be changed to “antlr3.org”.

	Use ./configure --with-antlr-dir=`pwd`/antlr-3.4 ANTLR=`pwd`/antlr-3.4/bin/antlr3 to do configuration.

	Following the rest steps in the building instruction. If the configure reports missing something, just install them all.

	Make

Using

To invoke command line interface, just type

./cvc4 scriptfile.smt2

It will use the correct parser based on file extensions. If you want to test all the scripts in a folder, try this

ls | xargs -n 1 cvc4

Kinds of Expressions

From Built-in Theory

	Kind
	Meaning

	SORT_TAG
	sort tag

	SORT_TYPE
	sort type

	UNINTERPRETED_CONSTANT
	The kind of expressions representing uninterpreted constants

	ABSTRACT_VALUE
	The kind of expressions representing abstract values (other than uninterpreted sort constant

	BUILTIN
	The kind of expressions representing built-in operators

	FUNCTION
	function

	APPLY
	defined function application

	EQUAL
	equality

	DISTINCT
	disequality

	VARIABLE
	variable

	BOUND_VARIABLE
	bound variable

	SKOLEM
	skolem var

	SEXPR
	a symbolic expression

	LAMBDA
	lambda

	CHAIN
	chain operator

	TYPE_CONSTANT
	basic types

	FUNCTION_TYPE
	function type

	SEXPR_TYPE
	symbolic expression type

	CONST_STRING
	a string of characters

	SUBTYPE_TYPE
	predicate subtype

From Boolean Theory

	Kind
	Meaning

	CONST_BOOLEAN
	truth and falsity

	NOT
	logical not

	AND
	logical and

	IFF
	logical equivalence

	IMPLIES
	logical implication

	OR
	logical or

	XOR
	exclusive or

	ITE
	if-then-else

From UF Theory

	Kind
	Meaning

	APPLY_UF
	uninterpreted function application

	CARDINALITY_CONSTRAINT
	cardinality constraint

From Arithmatic Theory

	Kind
	Meaning

	PLUS
	arithmetic addition

	MULT
	arithmetic multiplication

	MINUS
	arithmetic binary subtraction operator

	UMINUS
	arithmetic unary negation

	DIVISION
	real division (user symbol)

	DIVISION_TOTAL
	real division with interpreted division by 0 (internal symbol)

	INTS_DIVISION
	ints division (user symbol)

	INTS_DIVISION_TOTAL
	ints division with interpreted division by 0 (internal symbol)

	INTS_MODULUS
	ints modulus (user symbol)

	INTS_MODULUS_TOTAL
	ints modulus with interpreted division by 0 (internal symbol)

	POW
	arithmetic power

	SUBRANGE_TYPE
	the type of an integer subrange

	CONST_RATIONAL
	a multiple-precision rational constant

	LT
	less than, x < y

	LEQ
	less than or equal, x <= y

	GT
	greater than, x > y

	GEQ
	greater than or equal, x >= y

From Array Theory

	Kind
	Meaning

	ARRAY_TYPE
	array type

	SELECT
	array select

	STORE
	array store

	STORE_ALL
	array store-all

	ARR_TABLE_FUN
	array table function (internal symbol)

From BitVector Theory

	Kind
	Meaning

	BITVECTOR_TYPE
	bit-vector type

	CONST_BITVECTOR
	a fixed-width bit-vector constant

	BITVECTOR_CONCAT
	bit-vector concatenation

	BITVECTOR_AND
	bitwise and

	BITVECTOR_OR
	bitwise or

	BITVECTOR_XOR
	bitwise xor

	BITVECTOR_NOT
	bitwise not

	BITVECTOR_NAND
	bitwise nand

	BITVECTOR_NOR
	bitwise nor

	BITVECTOR_XNOR
	bitwise xnor

	BITVECTOR_COMP
	equality comparison (returns one bit)

	BITVECTOR_MULT
	bit-vector multiplication

	BITVECTOR_PLUS
	bit-vector addition

	BITVECTOR_SUB
	bit-vector subtraction

	BITVECTOR_NEG
	bit-vector unary negation

	BITVECTOR_UDIV
	bit-vector unsigned division, truncating towards 0 (undefined if divisor is 0)

	BITVECTOR_UREM
	bit-vector unsigned remainder from truncating division (undefined if divisor is 0)

	BITVECTOR_SDIV
	bit-vector 2’s complement signed division

	BITVECTOR_SREM
	bit-vector 2’s complement signed remainder (sign follows dividend)

	BITVECTOR_SMOD
	bit-vector 2’s complement signed remainder (sign follows divisor)

	BITVECTOR_UDIV_TOTAL
	bit-vector total unsigned division, truncating towards 0 (undefined if divisor is 0)

	BITVECTOR_UREM_TOTAL
	bit-vector total unsigned remainder from truncating division (undefined if divisor is 0)

	BITVECTOR_SHL
	bit-vector left shift

	BITVECTOR_LSHR
	bit-vector logical shift right

	BITVECTOR_ASHR
	bit-vector arithmetic shift right

	BITVECTOR_ULT
	bit-vector unsigned less than

	BITVECTOR_ULE
	bit-vector unsigned less than or equal

	BITVECTOR_UGT
	bit-vector unsigned greater than

	BITVECTOR_UGE
	bit-vector unsigned greater than or equal

	BITVECTOR_SLT
	bit-vector signed less than

	BITVECTOR_SLE
	bit-vector signed less than or equal

	BITVECTOR_SGT
	bit-vector signed greater than

	BITVECTOR_SGE
	bit-vector signed greater than or equal

	BITVECTOR_BITOF_OP
	operator for the bit-vector boolean bit extract

	BITVECTOR_EXTRACT_OP
	operator for the bit-vector extract

	BITVECTOR_REPEAT_OP
	operator for the bit-vector repeat

	BITVECTOR_ZERO_EXTEND_OP
	operator for the bit-vector zero-extend

	BITVECTOR_SIGN_EXTEND_OP
	operator for the bit-vector sign-extend

	BITVECTOR_ROTATE_LEFT_OP
	operator for the bit-vector rotate left

	BITVECTOR_ROTATE_RIGHT_OP
	operator for the bit-vector rotate right

	BITVECTOR_BITOF
	bit-vector boolean bit extract

	BITVECTOR_EXTRACT
	bit-vector extract

	BITVECTOR_REPEAT
	bit-vector repeat

	BITVECTOR_ZERO_EXTEND
	bit-vector zero-extend

	BITVECTOR_SIGN_EXTEND
	bit-vector sign-extend

	BITVECTOR_ROTATE_LEFT
	bit-vector rotate left

	BITVECTOR_ROTATE_RIGHT
	bit-vector rotate right

From Datatype Theory

	Kind
	Meaning

	CONSTRUCTOR_TYPE
	constructor

	SELECTOR_TYPE
	selector

	TESTER_TYPE
	tester

	APPLY_CONSTRUCTOR
	constructor application

	APPLY_SELECTOR
	selector application

	APPLY_TESTER
	tester application

	DATATYPE_TYPE
	datatype type

	PARAMETRIC_DATATYPE
	parametric datatype

	APPLY_TYPE_ASCRIPTION
	type ascription, for datatype constructor applications

	ASCRIPTION_TYPE
	a type parameter for type ascription

	TUPLE_TYPE
	tuple type

	TUPLE
	a tuple

	TUPLE_SELECT_OP
	operator for a tuple select

	TUPLE_SELECT
	tuple select

	TUPLE_UPDATE_OP
	operator for a tuple update

	TUPLE_UPDATE
	tuple update

	RECORD_TYPE
	record type

	RECORD
	a record

	RECORD_SELECT_OP
	operator for a record select

	RECORD_SELECT
	record select

	RECORD_UPDATE_OP
	operator for a record update

	RECORD_UPDATE
	record update

From Quantifier Theory

	Kind
	Meaning

	FORALL
	universally quantified formula

	EXISTS
	existentially quantified formula

	INST_CONSTANT
	instantiation constant

	BOUND_VAR_LIST
	bound variables

	INST_PATTERN
	instantiation pattern

	INST_PATTERN_LIST
	instantiation pattern list

From RewriteRule Theory

	Kind
	Meaning

	REWRITE_RULE
	generale rewrite rule

	RR_REWRITE
	actual rewrite rule

	RR_REDUCTION
	actual reduction rule

	RR_DEDUCTION
	actual deduction rule

Built-in Atomic Types

	Type
	Meaning

	BUILTIN_OPERATOR_TYPE
	Built in type for built in operators

	STRING_TYPE
	String type

	BOOLEAN_TYPE
	Boolean type

	REAL_TYPE
	Real type

	INTEGER_TYPE
	Integer type

	BOUND_VAR_LIST_TYPE
	Bound Var type

	INST_PATTERN_TYPE
	Instantiation pattern type

	INST_PATTERN_LIST_TYPE
	Instantiation pattern list type

	RRHB_TYPE
	head and body of the rule type

Theories

	ID
	Meaning

	THEORY_BUILTIN
	

	THEORY_BOOL
	

	THEORY_UF
	

	THEORY_ARITH
	

	THEORY_ARRAY
	

	THEORY_BV
	

	THEORY_DATATYPES
	

	THEORY_QUANTIFIERS
	

	THEORY_REWRITERULES
	

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMTFrontEnd 0.1 documentation

AltErgo

Introduction

Alt-Ergo is dedicated to program verification. It works in first-order logic. It uses a CC(X), a variant of Shostak algorithm, to combine free theory with equality and an arbitrary solvable built-in theory X. Alt-Ergo has implemented decision procedures for the theory of uninterpreted/free functions, arithmetic(integer, real, linear, non-linear), arrays, bit-vectors, datatypes, etc. It also has direct support for polymorphism in its native input language. Associative and commutative symbols are being handled specially using its AC(X) theory to boost the performance. It has limited support for universal and existential quantifiers through instantiation. It has the ability to generate proof. Alt-Ergo can handle unsat formulas correctly, but only returns unknown for sat formulas.

Since integer theory is intensively used in program verification, Alt-Ergo puts its efforts in the combination of empty/free theory with integer arithmetic theory. Alt-Ergo uses a Simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic.

Building

It depends largely on OCaml, so during configuration and making, if they report missing something, google that and install related packages. Most of them are OCaml related, and try to google ocamlfind, ocaml-core, typeconv for more information.

Using

To invoke command line interface, just type

./alt-ergo.opt scriptfile.smt2

to execute a SMT-LIB v2.0 script file. AltErgo will convert it into its native language, and then execute it. The result will be printed on the standard output.

To invoke GUI, just type

./altgr-ergo.opt scriptfile.smt2

to open it. If the file is successfully parsed and translated, then the GUI will open. Otherwise, it exits.

Note

It may take a very long time for either way to process the whole script file.

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMTFrontEnd 0.1 documentation

The SMT-LIB Language

The SMT-LIB Language uses S-expression, which is actually legal Common Lisp syntax. It has three main components: theory declarations, logic declarations, and scripts.

They contain only ASCII characters, not Unicode.

The followings are a preview of the ANTLR v4 grammar of SMTLIB v2.0 by Hanwen Wu, according to [BaST10]. (And, subject to change.)

A Summary of SMT-LIB Logic 2.0

We are working on integrating two SMT solvers, therefore it is necessary to understand the SMT-LIB 2.0 logic, which can be used as an input language for both solvers (AltErgo [http://alt-ergo.lri.fr/], CVC4 [http://cvc4.cs.nyu.edu/web/]). Part of the project is to classify formulas which can be solved by one solver, while not by the others. Therefore knowing how theories and logics are defined in SMT-LIB is also important.

SMT-LIB Logics

	\(\mathcal{S}\): Infinite set of sort symbols, containing BOOL.

	\(\mathcal{V}\): Infinite set of sort parameters

	\(\mathcal{X}\): Infinite set of variables

	\(\mathcal{F}\): Infinite set of function symbols

	\(\mathcal{B}\): Boolean values {true, false}

	...

Sorts

Sorts over a set of sort symbols \(\mathcal{S}\) are defined as Sort (\(\mathcal{S}\)).

	\(\sigma \in \mathcal{S}\) of arity 0 is a sort

	\(\sigma \sigma_1,\sigma_2,\sigma_3,...,\sigma_n\) is a sort if \(\sigma \in \mathcal{S}\) of arity \(n\), \(\sigma_1\) to \(\sigma_n\) are sorts

Signature

Baiscly, \(\Sigma\) defines sort symbols and arities, function symbols and ranks, some variables and their sorts.

	\(\Sigma^{\mathcal{S}} \subset \mathcal{S}\): sort symbols, containing BOOL

	\(\Sigma^{\mathcal{F}} \subset \mathcal{F}\): function symbols, containing equality, conjunction, and negation

	\(\Sigma^{\mathcal{S}}\) to \(\mathbb{ℕ}\): a total mapping from sort symbol to its arity, including 𝙱𝙾𝙾𝙻 \(\models\) 𝟶

	\(\Sigma^{\mathcal{F}}\) to Sort (\(\Sigma^{\mathcal{S}}\))+: a left total mapping from a function symbol to its rank, containing = (\(\sigma,\sigma\) ,BOOL), \(\neg\) (BOOL,BOOL), \(\land\) (BOOL,BOOL,BOOL).

	\(\mathcal{X}\) to Sort (\(\Sigma^{\mathcal{S}}\)): a partial mapping from a variable to its sort.

Formulas

Well sorted terms of sort BOOL over \(\Sigma\).

Structure

A can be regarded as a model.

	\(A\): the universe (of values) of A, including BOOL \(^{A}\) ={true,false}.

	\(\sigma^{A} \subset A\): give the sort \(\sigma \in\) Sort (\(\Sigma^{\mathcal{S}}\)) a universe \(\sigma^{A} \subset A\). For example, BOOL \(^{A}\) is {true,flase} \(\in A\). INT \(^{A}\) could be all the integers \(\mathbb{Z} \in A\).

	\((f:\sigma)^{A} \in \sigma^{A}\): give the constant symbol \(f:σ\) a value in the universe of \(\sigma\)

	\((f:\sigma_1,\sigma_2,...,\sigma_n,\sigma)^{A}\): define the function symbol as a relation from \((\sigma_1,\sigma_2,...,\sigma_n)^{A}\) to \(\sigma^{A}\). This must include the equality relations (or identity predicate over \(\sigma^A\), that is =(\(\sigma,\sigma\),BOOL) as standard equality relations from (\(\sigma^{A},\sigma^{A}\)) to {true,false}).

\(\sigma^{A}\) is called the extension of \(\sigma\) in \(A\).

Valuation and Interpretation

	Valuations \(v\): a partial mapping \(v\) from \(\mathcal{X} \times\) Sort \((\Sigma^{\mathcal{S}})\) to \(\sigma^{A}\). That is to give variable \(x\) of sort \(\sigma\) a value in \(\sigma^{A}\).

	Interpretation \(\mathcal{I}: \mathcal{I}=(A,v)\), that is the structure together with the valuations make the \(\Sigma\)-interpretation.

	Semantics: \(\mathcal{I}\) will assign a meaning to well-sorted terms by uniquely mapping them into the \(A\).

	
	Satisfiability:

	
	If \(\varphi\) is mapped to true by some \(\mathcal{I}\), then it is satisfiable.

	If \(\varphi\) is not closed, we say \(\mathcal{I}=(A,v)\) makes true \(\varphi\).

	If \(\varphi\) is closed, we say the structure \(A\) makes true \(\varphi\).(Since it does not matter what valuation it is.)

	If \(\varphi\) is closed, we say the structure \(A\) a model of \(\varphi\).

Theories

	Traditionally, its a set of axioms

	Here it consists of three parts

	Signature: \(\Sigma\)

	
	Axioms:

	We think this part is left for the people who implement solvers. Take INT theory as an example, since we have the plus sign in our signature (we just denote it as ADD, so that you know it is only a symbol, not the actual operation), we will have an axiom like ∀x:𝙸𝙽𝚃.y:𝙸𝙽𝚃.∃z:𝙸𝙽𝚃.𝙰𝙳𝙳(x,y,z)↔x+y=z. Therefore, our model (or structure) must contain the correct relations to map 𝙰𝙳𝙳 to the actual addition operation to satisfy this axiom.

Also, some theories like REAL include those axioms as plain text, like associativity, commutativity, etc.

	Models: A set of \(\Sigma\)-structures, all of which are models of the theory.

Logics

	Sublogic: it is a sublogic of SMT-LIB logic

	
	Restrictions:

	
	fixing a signature \(\Sigma\) and its theory \(\mathcal{T}\)

	restricting structures to the models of \(\mathcal{T}\)

	restricting input sentences as subset of \(\Sigma\)-sentences

Lexer Rules

// Predefined Symbols
SYM_BOOL : 'Bool';
SYM_CONTINUED_EXECUTION : 'continued-execution';
SYM_ERROR : 'error';
SYM_FALSE : 'false';
SYM_IMMEDIATE_EXIT : 'immediate-exit';
SYM_INCOMPLETE : 'incomplete';
SYM_LOGIC : 'logic';
SYM_MEMOUT : 'memout';
SYM_SAT : 'sat';
SYM_SUCCESS : 'success';
SYM_THEORY : 'theory';
SYM_TRUE : 'true';
SYM_UNKNOWN : 'unknown';
SYM_UNSAT : 'unsat';
SYM_UNSUPPORTED : 'unsupported';

// Predefined Keywords
KEYWORD_ALL_STATISTICS : ':all-statistics';
KEYWORD_AUTHORS : ':authors';
KEYWORD_AXIOMS : ':axioms';
KEYWORD_CHAINABLE : ':chainable';
KEYWORD_DEFINITION : ':definition';
KEYWORD_DIAGNOSTIC_OUTPUT_CHANNEL : ':diagnostic-output-channel';
KEYWORD_ERROR_BEHAVIOR : ':error-behavior';
KEYWORD_EXPAND_DEFINITIONS : ':expand-definitions';
KEYWORD_EXTENSIONS : ':extensions';
KEYWORD_FUNS : ':funs';
KEYWORD_FUNS_DESCRIPTION : ':funs-description';
KEYWORD_INTERACTIVE_MODE : ':interactive-mode';
KEYWORD_LANGUAGE : ':language';
KEYWORD_LEFT_ASSOC : ':left-assoc';
KEYWORD_NAME : ':name';
KEYWORD_NAMED : ':named';
KEYWORD_NOTES : ':notes';
KEYWORD_PRINT_SUCCESS : ':print-success';
KEYWORD_PRODUCE_ASSIGNMENTS : ':produce-assignments';
KEYWORD_PRODUCE_MODELS : ':produce-models';
KEYWORD_PRODUCE_PROOFS : ':produce-proofs';
KEYWORD_PRODUCE_UNSAT_CORES : ':produce-unsat-cores';
KEYWORD_RANDOM_SEED : ':random-seed';
KEYWORD_REASON_UNKNOWN : ':reason-unknown';
KEYWORD_REGULAR_OUTPUT_CHANNEL : ':regular-output-channel';
KEYWORD_RIGHT_ASSOC : ':right-assoc';
KEYWORD_SORTS : ':sorts';
KEYWORD_SORTS_DESCRIPTION : ':sorts-description';
KEYWORD_STATUS : ':status';
KEYWORD_THEORIES : ':theories';
KEYWORD_VALUES : ':values';
KEYWORD_VERBOSITY : ':verbosity';
KEYWORD_VERSION : ':version';

// Predifined General Token
TOKEN_BANG : '!';
TOKEN_UNDERSCORE : '_';
TOKEN_AS : 'as';
TOKEN_DECIMAL : 'DECIMAL';
TOKEN_EXISTS : 'exists';
TOKEN_FORALL : 'forall';
TOKEN_LET : 'let';
TOKEN_NUMERAL : 'NUMERAL';
TOKEN_PAR : 'par';
TOKEN_STRING : 'STRING';

// Predefined Command Token
TOKEN_CMD_ASSERT : 'assert';
TOKEN_CMD_CHECK_SAT : 'check-sat';
TOKEN_CMD_DECLARE_SORT : 'declare-sort';
TOKEN_CMD_DECLARE_FUN : 'declare-fun';
TOKEN_CMD_DEFINE_SORT : 'define-sort';
TOKEN_CMD_DEFINE_FUN : 'define-fun';
TOKEN_CMD_EXIT : 'exit';
TOKEN_CMD_GET_ASSERTIONS : 'get-assertions';
TOKEN_CMD_GET_ASSIGNMENT : 'get-assignment';
TOKEN_CMD_GET_INFO : 'get-info';
TOKEN_CMD_GET_OPTION : 'get-option';
TOKEN_CMD_GET_PROOF : 'get-proof';
TOKEN_CMD_GET_UNSAT_CORE : 'get-unsat-core';
TOKEN_CMD_GET_VALUE : 'get-value';
TOKEN_CMD_POP : 'pop';
TOKEN_CMD_PUSH : 'push';
TOKEN_CMD_SET_LOGIC : 'set-logic';
TOKEN_CMD_SET_INFO : 'set-info';
TOKEN_CMD_SET_OPTION : 'set-option';

fragment DIGIT : [0-9];
fragment HEXDIGIT : DIGIT | [a-fA-F];
fragment ALPHA : [a-zA-Z];
fragment ESCAPE : '\\' ('\\' | '"');
fragment SYM_CHAR : [+-/*=%?!.$_~&^<>@];

NUMERAL : '0' | [1-9] DIGIT*;
DECIMAL : NUMERAL '.' [0]* NUMERAL;
HEXADECIMAL : '#x' HEXDIGIT+;
BINARY : '#b' [01]+;
STRING : '"' (ESCAPE | ~('\\' | '"')*) '"';
WS : [\t\r\n\f]+ {skip();};
SIMPLE_SYM : (ALPHA | SYM_CHAR) (DIGIT | ALPHA | SYM_CHAR)*;
QUOTED_SYM : '|' ~('|' | '\\')* '|';
COMMENT : ';' ~('\n' | '\r')* {skip();};
KEYWORD_TOKEN : ':' (ALPHA | DIGIT | SYM_CHAR)+;

Parser Rules

symbol : SIMPLE_SYM
 | QUOTED_SYM
 | SYM_BOOL
 | SYM_CONTINUED_EXECUTION
 | SYM_ERROR
 | SYM_FALSE
 | SYM_IMMEDIATE_EXIT
 | SYM_INCOMPLETE
 | SYM_LOGIC
 | SYM_MEMOUT
 | SYM_SAT
 | SYM_SUCCESS
 | SYM_THEORY
 | SYM_TRUE
 | SYM_UNKNOWN
 | SYM_UNSAT
 | SYM_UNSUPPORTED
 ;

keyword : KEYWORD_TOKEN
 | KEYWORD_ALL_STATISTICS
 | KEYWORD_AUTHORS
 | KEYWORD_AXIOMS
 | KEYWORD_CHAINABLE
 | KEYWORD_DEFINITION
 | KEYWORD_DIAGNOSTIC_OUTPUT_CHANNEL
 | KEYWORD_ERROR_BEHAVIOR
 | KEYWORD_EXPAND_DEFINITIONS
 | KEYWORD_EXTENSIONS
 | KEYWORD_FUNS
 | KEYWORD_FUNS_DESCRIPTION
 | KEYWORD_INTERACTIVE_MODE
 | KEYWORD_LANGUAGE
 | KEYWORD_LEFT_ASSOC
 | KEYWORD_NAME
 | KEYWORD_NAMED
 | KEYWORD_NOTES
 | KEYWORD_PRINT_SUCCESS
 | KEYWORD_PRODUCE_ASSIGNMENTS
 | KEYWORD_PRODUCE_MODELS
 | KEYWORD_PRODUCE_PROOFS
 | KEYWORD_PRODUCE_UNSAT_CORES
 | KEYWORD_RANDOM_SEED
 | KEYWORD_REASON_UNKNOWN
 | KEYWORD_REGULAR_OUTPUT_CHANNEL
 | KEYWORD_RIGHT_ASSOC
 | KEYWORD_SORTS
 | KEYWORD_SORTS_DESCRIPTION
 | KEYWORD_STATUS
 | KEYWORD_THEORIES
 | KEYWORD_VALUES
 | KEYWORD_VERBOSITY
 | KEYWORD_VERSION
 ;

spec_constant : NUMERAL | DECIMAL | HEXADECIMAL | BINARY | STRING;
s_expr : spec_constant | symbol | keyword | '(' s_expr* ')';

identifier : symbol | '(' TOKEN_UNDERSCORE symbol NUMERAL+ ')';
sort : identifier | '(' identifier sort+ ')';
attribute_value : symbol | spec_constant | '(' s_expr* ')';
attribute : keyword | keyword attribute_value;

qual_identifier : identifier | '(' TOKEN_AS identifier sort ')';
var_binding : '(' symbol term ')';
sorted_var : '(' symbol sort ')';
term
 : spec_constant
 | qual_identifier
 | '(' qual_identifier term+ ')'
 | '(' TOKEN_LET '(' var_binding+ ')' term ')'
 | '(' TOKEN_FORALL '(' sorted_var+ ')' term ')'
 | '(' TOKEN_EXISTS '(' sorted_var+ ')' term ')'
 | '(' TOKEN_BANG term attribute+ ')'
 ;

sort_symbol_decl : '(' identifier NUMERAL attribute* ')';
meta_spec_constant : TOKEN_NUMERAL | TOKEN_DECIMAL | TOKEN_STRING;
fun_symbol_decl
 : '(' spec_constant sort attribute* ')'
 | '(' meta_spec_constant sort attribute* ')'
 | '(' identifier sort+ attribute* ')'
 ;
par_fun_symbol_decl
 : fun_symbol_decl
 | '(' TOKEN_PAR '(' symbol+ ')' '(' identifier sort+ attribute* ')' ')'
 ;

theory_decl : '(' SYM_THEORY symbol? theory_attribute+ ')';

theory_attribute
 : KEYWORD_SORTS '(' sort_symbol_decl+ ')'
 | KEYWORD_FUNS '(' par_fun_symbol_decl+ ')'
 | KEYWORD_SORTS_DESCRIPTION STRING
 | KEYWORD_FUNS_DESCRIPTION STRING
 | KEYWORD_DEFINITION STRING
 | KEYWORD_VALUES STRING
 | KEYWORD_NOTES STRING
 | attribute
 ;

logic_attribute
 : KEYWORD_THEORIES '(' symbol+ ')'
 | KEYWORD_LANGUAGE STRING
 | KEYWORD_EXTENSIONS STRING
 | KEYWORD_VALUES STRING
 | KEYWORD_NOTES STRING
 | attribute
 ;

logic : '(' SYM_LOGIC symbol logic_attribute+ ')';

b_value : SYM_TRUE | SYM_FALSE;
option
 : KEYWORD_PRINT_SUCCESS b_value
 | KEYWORD_EXPAND_DEFINITIONS b_value
 | KEYWORD_INTERACTIVE_MODE b_value
 | KEYWORD_PRODUCE_PROOFS b_value
 | KEYWORD_PRODUCE_UNSAT_CORES b_value
 | KEYWORD_PRODUCE_MODELS b_value
 | KEYWORD_PRODUCE_ASSIGNMENTS b_value
 | KEYWORD_REGULAR_OUTPUT_CHANNEL STRING
 | KEYWORD_DIAGNOSTIC_OUTPUT_CHANNEL STRING
 | KEYWORD_RANDOM_SEED NUMERAL
 | KEYWORD_VERBOSITY NUMERAL
 | attribute
 ;

info_flag
 : KEYWORD_ERROR_BEHAVIOR
 | KEYWORD_NAME
 | KEYWORD_AUTHORS
 | KEYWORD_VERSION
 | KEYWORD_STATUS
 | KEYWORD_REASON_UNKNOWN
 | keyword
 | KEYWORD_ALL_STATISTICS
 ;

command
 : '(' TOKEN_CMD_SET_LOGIC symbol ')'
 | '(' TOKEN_CMD_SET_OPTION option ')'
 | '(' TOKEN_CMD_SET_INFO attribute ')'
 | '(' TOKEN_CMD_DECLARE_SORT symbol NUMERAL ')'
 | '(' TOKEN_CMD_DEFINE_SORT symbol '(' symbol* ')' sort ')'
 | '(' TOKEN_CMD_DECLARE_FUN symbol '(' sort* ')' sort ')'
 | '(' TOKEN_CMD_DEFINE_FUN symbol '(' sorted_var* ')' sort term ')'
 | '(' TOKEN_CMD_PUSH NUMERAL ')'
 | '(' TOKEN_CMD_POP NUMERAL ')'
 | '(' TOKEN_CMD_ASSERT term ')'
 | '(' TOKEN_CMD_CHECK_SAT ')'
 | '(' TOKEN_CMD_GET_ASSERTIONS ')'
 | '(' TOKEN_CMD_GET_PROOF ')'
 | '(' TOKEN_CMD_GET_UNSAT_CORE ')'
 | '(' TOKEN_CMD_GET_VALUE '(' term+ ')' ')'
 | '(' TOKEN_CMD_GET_ASSIGNMENT ')'
 | '(' TOKEN_CMD_GET_OPTION keyword ')'
 | '(' TOKEN_CMD_GET_INFO info_flag ')'
 | '(' TOKEN_CMD_EXIT ')'
 ;

script : command+;

gen_response : SYM_UNSUPPORTED | SYM_SUCCESS | '(' SYM_ERROR STRING ')';
error_behavior : SYM_IMMEDIATE_EXIT | SYM_CONTINUED_EXECUTION;
reason_unknown : SYM_MEMOUT | SYM_INCOMPLETE;
status : SYM_SAT | SYM_UNSAT | SYM_UNKNOWN;
info_response
 : KEYWORD_ERROR_BEHAVIOR error_behavior
 | KEYWORD_NAME STRING
 | KEYWORD_AUTHORS STRING
 | KEYWORD_VERSION STRING
 | KEYWORD_REASON_UNKNOWN reason_unknown
 | attribute
 ;

get_info_response : '(' info_response+ ')';
check_sat_response : status;
get_assertions_response : '(' term+ ')';
proof : s_expr;
get_proof_response : proof;
get_unsat_core_response : '(' symbol+ ')';
valuation_pair : '(' term term ')';
get_value_response : '(' valuation_pair+ ')';
t_valuation_pair : '(' symbol b_value ')';
get_assignment_response : '(' t_valuation_pair* ')';
get_option_response : attribute_value;

Examples

Script File

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMTFrontEnd 0.1 documentation

Test

Benchmarks

SMT-LIB community has been contributing benchmarks and holding competitions for several years. They can be considered as good standard benchmarks for SMT solvers. We have select integers, bit-vectors, and quantifiers related benchmarks for our tests. These tests are within QF-IDL, QF-NIA, QF-UFBV, QF-UFLIA, UFNIA, QF-BV, QF-LIA, QF-UF, QF-UFIDL.

We also select the Bounded Model Checking and k-induction problems within QF-LIA benchmarks from 2012 SMT Competition
to test their abilities of applying inductive axioms.

All of the benchmarks are in the SMT-LIB 2.0 format, most of which should be handled by both solvers. But in practice, Alt-Ergo reports typing error and parsing error on some test inputs because its current version 0.95.1 does not fully support it yet. And also, some of the benchmarks do not indicate expected results. They are either unknown or not available at all. Therefore, we only considered those can be handled by both solvers, and had an expected answer of sat/unsat as valid benchmarks when we were analysing the result.

Testing Methods

We wrote a testing script to run the tests. The script first randomly selected test inputs from all the benchmarks. Secondly, both solvers were invoked for each input, individually, not simultaneously. Thirdly, their execution time was captured by Unix time utility, and the real wall time was considered as their execution time. Finally, there was a timeout of 30 seconds. If any of them reached 30 seconds, it was killed.

Since Alt-Ergo cannot handle inputs with an expected answer of sat, we just skipped that for Alt-Ergo, and only use that input as a measure of efficiency/capability for CVC4 only.

For BMC and k-induction problems, we had a different strategy. Each of those benchmarks consists of multiple smaller problems, which require the solver to solve them incrementally. Therefore we set up a timeout of 15 seconds, to compare how much problems they can solve in a limited time.

We ran the tests on a Core i5-3320M 2.6GHz dual core CPU with 8GB memory, on Ubuntu 13.04 32bit operating system. During testing, no other job is allowed.

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMTFrontEnd 0.1 documentation

Results

You can find detailed testing data analysis and figures in our full paper here.

CVC4

CVC4 as a DPLL solver, implemented in C++, is very powerful and effective, especially in QF-UF, QF-LIA, QF-UFIDL, and QF-UFLIA. It works in QF-BV, QF-UFBV and QF-IDL, but not well enough. It has limited support for QF-NIA, and even more limited for UFNIA. It is very efficient in all divisions except QF-BV. In other words, its theory implementation for free functions and linear integer arithmetic are particularly good. Bit-vectors theory is not as good as previous ones, and quantifiers and non-linear arithmetic are not supported well.

It has good enough support for BMC and k-induction problems, which means it has the capability to apply inductive axioms very well.

CVC4 handles large inputs very well, even for input formulas with more than 500 variables and bindings.

Alt-Ergo

Alt-Ergo as a CC(X) solver, implemented using functional language OCaml, performs good in QF-UF. It supports its own Why3 input language, but only supports SMT-LIB 2.0 in a very limited way. According to its performance, it should be good in QF-IDL, QF-UFLIA as well, if it can translate SMT-LIB language better. It runs relatively good enough in UFNIA division, which may due to its AC(X) theory that can quickly solve some non-linear integer arithmetic that only involves associative and commutative properties.

In BMC and k-induction problems, Alt-Ergo performs very well, which reflects the fact that it is designed for program verification. It has a very good ability to apply inductive axioms.

Alt-Ergo has problems dealing with large input, which is partly due to the case that it is implemented using a functional language OCaml. Compared to C++, OCaml is not good at memory management, which causes Alt-Ergo to run out of memory a lot.

Comparison

Comparing the two solvers, CVC4 wins in both capabilities and efficiency. Its solvable problems are a superset of Alt-Ergo’s. And Alt-Ergo cannot handle sat input. But Alt-Ergo performs good enough considering that CVC4 is implemented in C++ while Alt-Ergo is in OCaml.

Integrating CVC4 & Alt-Ergo

Based on our tests, we found that it is not worth enough to integrate them into one solver. Therefore, we implemented a C frontend that calls both solvers using SMT-LIB scripts, and return the first sat/unsat response and kills the other solver. The solver is neither more powerful nor more efficient as expected, which is nearly identical to CVC4 alone.

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	SMTFrontEnd 0.1 documentation

References

We have used a lot of materials from the Internet. And these are an incomplete list of them.
We want to say thank you to all those geniuses behind these documentations/papers/reports.

Website Links

	[Alt-Ergo]	http://alt-ergo.lri.fr/

	[CVC4]	http://cvc4.cs.nyu.edu/web/

	[SMTLIB]	http://smtlib.org/

Books

	[BaBE11]	Barker-Plummer, David; Barwise, Jon; Etchemendy, John: Language, Proof, and Logic. 2. Aufl.: Center for the Study of Language and Inf, 2011 —ISBN1575866323

	[HuRy04]	Huth, M.; Ryan, M.: Logic in Computer Science: Modelling and Reasoning About Systems. 2. Aufl.: Cambridge University Press Cambridge, UK, 2004 [http://dl.acm.org/ft_gateway.cfm?id=1086674&type=pdf]

Papers/Reports

	[AFGK11]	Armand, Mickaël; Faure, Germain; Grégoire, Benjamin; Keller, Chantal; Théry, Laurent; Wener, Benjamin: Verifying SAT and SMT in Coq for a fully automated decision procedure. In: PSATTT’11: International Workshop on Proof-Search in Axiomatic Theories and Type Theories, 2011 [http://hal.inria.fr/inria-00614041/]

	[AvBM01]	Avellone, A.; Benini, M.; Moscato, U.: How to avoid the formal verification of a theorem prover. In: Logic journal of IGPL 9 (2001), Nr.1, S.1–25 [http://jigpal.oxfordjournals.org/content/9/1/1.short]

	[BaST10]	Barrett, Clark; Stump, Aaron; Tinelli, Cesare: The smt-lib standard: Version 2.0. In: Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England). Bd.13, 2010 [http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf]

	[BDOS08]	Barrett, Clark; Deters, Morgan; Oliveras, Albert; Stump, Aaron: Design and results of the 4th annual satisfiability modulo theories competition (SMT-COMP 2008). In: To appear 6 (2008) [http://cs1.cs.nyu.edu/web/Research/TechReports/TR2010-931/TR2010-931.pdf]

	[BeKL12]	Bestavros, Azer; Kfoury, Assaf; Lapets, Andrei: Seamless Composition and Integration: A Perspective on Formal Methods Research (2012) [http://www.cs.bu.edu/techreports/pdf/2012-001-mscs-editorial.pdf]

	[BFMP11]	Bobot, Franccois; Filliâtre, Jean-Christophe; Marché, Claude; Paskevich, Andrei: The Why3 platform: LRI, CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.64 edition, 2011 [https://gforge.inria.fr/docman/view.php/2990/8052/manual-0.73.pdf]

	[BMBC08]	Barrett, Clark; de Moura, Leonardo; Bjørner, Nikolaj; Cimatti, Alessandro; ITC-IRST, Trento; Dutertre, Bruno; Krstic, Sava; Nieuwenhuis, Robert; u. a.: SMT 2008: 6th International Workshop on Satisfiability Modulo Theories. In: Workshop: July. Bd.7, 2008, S.8 [http://research.microsoft.com/en-us/um/people/leonardo/SMT08_proceedings.pdf]

	[BoFi00]	Bobot, Franccois; Filliâtre, Jean-Christophe: Separation Predicates: a Taste of Separation Logic in First-Order Logic [http://proval.lri.fr/publications/bobot12icfem.pdf]

	[CoCK06]	Conchon, Sylvain; Contejean, Evelyne; Kanig, Johannes: Ergo: a theorem prover for polymorphic first-order logic modulo theories. In: Artigo sobre o Ergo. Disponível em:< http://ergo. lri. fr/papers/ergo. ps>. Acesso em 17 (2006) [http://ergo.lri.fr/papers/ergo.ps]

	[EcPe09]	Echenim, M.; Peltier, N.: A New Instantiation Scheme for Satisfiability Modulo Theories (Research Report) (2009) [http://membres-lig.imag.fr/peltier/rr-smt.pdf]

	[GuKM11]	Guitton, Jérôme; Kanig, Johannes; Moy, Yannick: Why Hi-Lite Ada? In: Rustan, et al.[32] (2011), S.27–39 [http://research.microsoft.com/en-us/um/people/moskal/boogie2011/proc1.pdf#page=33]

	[LaMi00]	Lapets, Andrei; Mirzaei, Saber: Towards Lightweight Integration of SMT Solvers [http://www.cs.bu.edu/techreports/pdf/2012-017-smt-integration.pdf]

	[MoBj09]	De Moura, L.; Bjørner, N.: Satisfiability modulo theories: An appetizer. In: Formal Methods: Foundations and Applications (2009), S.23–36 [http://www.springerlink.com/index/B4810780418L2M35.pdf]

	[Mour00]	de Moura, L.: SMT Solvers: Theory and Implementation [http://research.microsoft.com/en-us/um/people/leonardo/files/oregon08.pdf]

	[PrBG05]	Prasad, M. R.; Biere, A.; Gupta, A.: A survey of recent advances in SAT-based formal verification. In: International Journal on Software Tools for Technology Transfer (STTT) 7 (2005), Nr.2, S.156–173 [http://www.springerlink.com/index/ucyjdvmqaquetapx.pdf]

	[RuSh07]	Rushby, John; Shankar, Natarajan: AFM’07: Second Workshop on Automated Formal Methods: November 6, 2007, Atlanta, Georgia: Association for Computing Machinery, 2007 [http://fm.csl.sri.com/AFM07/afm07-preprint.pdf]

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	SMTFrontEnd 0.1 documentation

Index

 Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _themes/solar/README.html

 Navigation

 		
 index

 		SMTFrontEnd 0.1 documentation »

Solar theme for Python Sphinx

Solar is an attempt to create a theme for Sphinx based on the Solarized [http://ethanschoonover.com/solarized] color scheme.

Preview

http://vimalkumar.in/sphinx-themes/solar

Download

Released versions are available from http://github.com/vkvn/sphinx-themes/downloads

Installation

		Extract the archive.

		Modify conf.py of an existing Sphinx project or create new project using sphinx-quickstart.

		Change the html_theme parameter to solar.

		Change the html_theme_path to the location containing the extracted archive.

License

GNU General Public License [http://www.gnu.org/licenses/gpl.html].

Credits

Modified from the default Sphinx theme – Sphinxdoc

Background pattern from http://subtlepatterns.com.

 © Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/minus.png

_images/hanwen_wu.jpg

_static/comment-bright.png

cvc4_inside.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		SMTFrontEnd 0.1 documentation »

Inside CVC4

Kinds of Expressions

From Built-in Theory

		Kind
		Meaning

		SORT_TAG
		sort tag

		SORT_TYPE
		sort type

		UNINTERPRETED_CONSTANT
		The kind of expressions representing uninterpreted constants

		ABSTRACT_VALUE
		The kind of expressions representing abstract values (other than uninterpreted sort constant

		BUILTIN
		The kind of expressions representing built-in operators

		FUNCTION
		function

		APPLY
		defined function application

		EQUAL
		equality

		DISTINCT
		disequality

		VARIABLE
		variable

		BOUND_VARIABLE
		bound variable

		SKOLEM
		skolem var

		SEXPR
		a symbolic expression

		LAMBDA
		lambda

		CHAIN
		chain operator

		TYPE_CONSTANT
		basic types

		FUNCTION_TYPE
		function type

		SEXPR_TYPE
		symbolic expression type

		CONST_STRING
		a string of characters

		SUBTYPE_TYPE
		predicate subtype

From Boolean Theory

		Kind
		Meaning

		CONST_BOOLEAN
		truth and falsity

		NOT
		logical not

		AND
		logical and

		IFF
		logical equivalence

		IMPLIES
		logical implication

		OR
		logical or

		XOR
		exclusive or

		ITE
		if-then-else

From UF Theory

		Kind
		Meaning

		APPLY_UF
		uninterpreted function application

		CARDINALITY_CONSTRAINT
		cardinality constraint

From Arithmatic Theory

		Kind
		Meaning

		PLUS
		arithmetic addition

		MULT
		arithmetic multiplication

		MINUS
		arithmetic binary subtraction operator

		UMINUS
		arithmetic unary negation

		DIVISION
		real division (user symbol)

		DIVISION_TOTAL
		real division with interpreted division by 0 (internal symbol)

		INTS_DIVISION
		ints division (user symbol)

		INTS_DIVISION_TOTAL
		ints division with interpreted division by 0 (internal symbol)

		INTS_MODULUS
		ints modulus (user symbol)

		INTS_MODULUS_TOTAL
		ints modulus with interpreted division by 0 (internal symbol)

		POW
		arithmetic power

		SUBRANGE_TYPE
		the type of an integer subrange

		CONST_RATIONAL
		a multiple-precision rational constant

		LT
		less than, x < y

		LEQ
		less than or equal, x <= y

		GT
		greater than, x > y

		GEQ
		greater than or equal, x >= y

From Array Theory

		Kind
		Meaning

		ARRAY_TYPE
		array type

		SELECT
		array select

		STORE
		array store

		STORE_ALL
		array store-all

		ARR_TABLE_FUN
		array table function (internal symbol)

From BitVector Theory

		Kind
		Meaning

		BITVECTOR_TYPE
		bit-vector type

		CONST_BITVECTOR
		a fixed-width bit-vector constant

		BITVECTOR_CONCAT
		bit-vector concatenation

		BITVECTOR_AND
		bitwise and

		BITVECTOR_OR
		bitwise or

		BITVECTOR_XOR
		bitwise xor

		BITVECTOR_NOT
		bitwise not

		BITVECTOR_NAND
		bitwise nand

		BITVECTOR_NOR
		bitwise nor

		BITVECTOR_XNOR
		bitwise xnor

		BITVECTOR_COMP
		equality comparison (returns one bit)

		BITVECTOR_MULT
		bit-vector multiplication

		BITVECTOR_PLUS
		bit-vector addition

		BITVECTOR_SUB
		bit-vector subtraction

		BITVECTOR_NEG
		bit-vector unary negation

		BITVECTOR_UDIV
		bit-vector unsigned division, truncating towards 0 (undefined if divisor is 0)

		BITVECTOR_UREM
		bit-vector unsigned remainder from truncating division (undefined if divisor is 0)

		BITVECTOR_SDIV
		bit-vector 2’s complement signed division

		BITVECTOR_SREM
		bit-vector 2’s complement signed remainder (sign follows dividend)

		BITVECTOR_SMOD
		bit-vector 2’s complement signed remainder (sign follows divisor)

		BITVECTOR_UDIV_TOTAL
		bit-vector total unsigned division, truncating towards 0 (undefined if divisor is 0)

		BITVECTOR_UREM_TOTAL
		bit-vector total unsigned remainder from truncating division (undefined if divisor is 0)

		BITVECTOR_SHL
		bit-vector left shift

		BITVECTOR_LSHR
		bit-vector logical shift right

		BITVECTOR_ASHR
		bit-vector arithmetic shift right

		BITVECTOR_ULT
		bit-vector unsigned less than

		BITVECTOR_ULE
		bit-vector unsigned less than or equal

		BITVECTOR_UGT
		bit-vector unsigned greater than

		BITVECTOR_UGE
		bit-vector unsigned greater than or equal

		BITVECTOR_SLT
		bit-vector signed less than

		BITVECTOR_SLE
		bit-vector signed less than or equal

		BITVECTOR_SGT
		bit-vector signed greater than

		BITVECTOR_SGE
		bit-vector signed greater than or equal

		BITVECTOR_BITOF_OP
		operator for the bit-vector boolean bit extract

		BITVECTOR_EXTRACT_OP
		operator for the bit-vector extract

		BITVECTOR_REPEAT_OP
		operator for the bit-vector repeat

		BITVECTOR_ZERO_EXTEND_OP
		operator for the bit-vector zero-extend

		BITVECTOR_SIGN_EXTEND_OP
		operator for the bit-vector sign-extend

		BITVECTOR_ROTATE_LEFT_OP
		operator for the bit-vector rotate left

		BITVECTOR_ROTATE_RIGHT_OP
		operator for the bit-vector rotate right

		BITVECTOR_BITOF
		bit-vector boolean bit extract

		BITVECTOR_EXTRACT
		bit-vector extract

		BITVECTOR_REPEAT
		bit-vector repeat

		BITVECTOR_ZERO_EXTEND
		bit-vector zero-extend

		BITVECTOR_SIGN_EXTEND
		bit-vector sign-extend

		BITVECTOR_ROTATE_LEFT
		bit-vector rotate left

		BITVECTOR_ROTATE_RIGHT
		bit-vector rotate right

From Datatype Theory

		Kind
		Meaning

		CONSTRUCTOR_TYPE
		constructor

		SELECTOR_TYPE
		selector

		TESTER_TYPE
		tester

		APPLY_CONSTRUCTOR
		constructor application

		APPLY_SELECTOR
		selector application

		APPLY_TESTER
		tester application

		DATATYPE_TYPE
		datatype type

		PARAMETRIC_DATATYPE
		parametric datatype

		APPLY_TYPE_ASCRIPTION
		type ascription, for datatype constructor applications

		ASCRIPTION_TYPE
		a type parameter for type ascription

		TUPLE_TYPE
		tuple type

		TUPLE
		a tuple

		TUPLE_SELECT_OP
		operator for a tuple select

		TUPLE_SELECT
		tuple select

		TUPLE_UPDATE_OP
		operator for a tuple update

		TUPLE_UPDATE
		tuple update

		RECORD_TYPE
		record type

		RECORD
		a record

		RECORD_SELECT_OP
		operator for a record select

		RECORD_SELECT
		record select

		RECORD_UPDATE_OP
		operator for a record update

		RECORD_UPDATE
		record update

From Quantifier Theory

		Kind
		Meaning

		FORALL
		universally quantified formula

		EXISTS
		existentially quantified formula

		INST_CONSTANT
		instantiation constant

		BOUND_VAR_LIST
		bound variables

		INST_PATTERN
		instantiation pattern

		INST_PATTERN_LIST
		instantiation pattern list

From RewriteRule Theory

		Kind
		Meaning

		REWRITE_RULE
		generale rewrite rule

		RR_REWRITE
		actual rewrite rule

		RR_REDUCTION
		actual reduction rule

		RR_DEDUCTION
		actual deduction rule

Built-in Atomic Types

		Type
		Meaning

		BUILTIN_OPERATOR_TYPE
		Built in type for built in operators

		STRING_TYPE
		String type

		BOOLEAN_TYPE
		Boolean type

		REAL_TYPE
		Real type

		INTEGER_TYPE
		Integer type

		BOUND_VAR_LIST_TYPE
		Bound Var type

		INST_PATTERN_TYPE
		Instantiation pattern type

		INST_PATTERN_LIST_TYPE
		Instantiation pattern list type

		RRHB_TYPE
		head and body of the rule type

Theories

		ID
		Meaning

		THEORY_BUILTIN
		

		THEORY_BOOL
		

		THEORY_UF
		

		THEORY_ARITH
		

		THEORY_ARRAY
		

		THEORY_BV
		

		THEORY_DATATYPES
		

		THEORY_QUANTIFIERS
		

		THEORY_REWRITERULES
		

 © Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_images/wenxin_feng.jpg

search.html

 Navigation

 		
 index

 		SMTFrontEnd 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

ssll2.html

 Navigation

 		
 index

 		SMTFrontEnd 0.1 documentation »

A Summary of SMT-LIB Logic 2.0

We are working on integrating two SMT solvers, therefore it is necessary to understand the SMT-LIB 2.0 logic, which can be used as an input language for both solvers (AltErgo [http://alt-ergo.lri.fr/], CVC4 [http://cvc4.cs.nyu.edu/web/]). Part of the project is to classify formulas which can be solved by one solver, while not by the others. Therefore knowing how theories and logics are defined in SMT-LIB is also important.

SMT-LIB Logics

		\(\mathcal{S}\): Infinite set of sort symbols, containing BOOL.

		\(\mathcal{V}\): Infinite set of sort parameters

		\(\mathcal{X}\): Infinite set of variables

		\(\mathcal{F}\): Infinite set of function symbols

		\(\mathcal{B}\): Boolean values {true, false}

		...

Sorts

Sorts over a set of sort symbols \(\mathcal{S}\) are defined as Sort (\(\mathcal{S}\)).

		\(\sigma \in \mathcal{S}\) of arity 0 is a sort

		\(\sigma \sigma_1,\sigma_2,\sigma_3,...,\sigma_n\) is a sort if \(\sigma \in \mathcal{S}\) of arity \(n\), \(\sigma_1\) to \(\sigma_n\) are sorts

Signature

Baiscly, \(\Sigma\) defines sort symbols and arities, function symbols and ranks, some variables and their sorts.

		\(\Sigma^{\mathcal{S}} \subset \mathcal{S}\): sort symbols, containing BOOL

		\(\Sigma^{\mathcal{F}} \subset \mathcal{F}\): function symbols, containing equality, conjunction, and negation

		\(\Sigma^{\mathcal{S}}\) to \(\mathbb{ℕ}\): a total mapping from sort symbol to its arity, including 𝙱𝙾𝙾𝙻 \(\models\) 𝟶

		\(\Sigma^{\mathcal{F}}\) to Sort (\(\Sigma^{\mathcal{S}}\))+: a left total mapping from a function symbol to its rank, containing = (\(\sigma,\sigma\) ,BOOL), \(\neg\) (BOOL,BOOL), \(\land\) (BOOL,BOOL,BOOL).

		\(\mathcal{X}\) to Sort (\(\Sigma^{\mathcal{S}}\)): a partial mapping from a variable to its sort.

Formulas

Well sorted terms of sort BOOL over \(\Sigma\).

Structure

A can be regarded as a model.

		\(A\): the universe (of values) of A, including BOOL \(^{A}\) ={true,false}.

		\(\sigma^{A} \subset A\): give the sort \(\sigma \in\) Sort (\(\Sigma^{\mathcal{S}}\)) a universe \(\sigma^{A} \subset A\). For example, BOOL \(^{A}\) is {true,flase} \(\in A\). INT \(^{A}\) could be all the integers \(\mathbb{Z} \in A\).

		\((f:\sigma) A \in \sigma^{A}\): give the constant symbol \(f:σ\) a value in the universe of \(\sigma\)

		\((f:\sigma_1,\sigma_2,...,\sigma_n,\sigma)^{A}\): define the function symbol as a relation from \((\sigma_1,\sigma_2,...,\sigma_n)^{A}\) to \(\sigma^{A}\). This must include the equality relations (or identity predicate over \(\sigma^A\), that is =(\(\sigma,\sigma\),BOOL) as standard equality relations from (\(\sigma^{A},\sigma^{A}\)) to {true,false}).

\(\sigma^{A}\) is called the extension of \(\sigma\) in \(A\).

Valuation and Interpretation

		Valuations \(v\): a partial mapping \(v\) from \(\mathcal{X} \times\) Sort \((\Sigma^{\mathcal{S}})\) to \(\sigma^{A}\). That is to give variable \(x\) of sort \(\sigma\) a value in \(\sigma^{A}\).

		Interpretation \(\mathcal{I}: \mathcal{I}=(A,v)\), that is the structure together with the valuations make the \(\Sigma\)-interpretation.

		Semantics: \(\mathcal{I}\) will assign a meaning to well-sorted terms by uniquely mapping them into the \(A\).

		
		Satisfiability:

		
		If \(\varphi\) is mapped to true by some \(\mathcal{I}\), then it is satisfiable.

		If \(\varphi\) is not closed, we say \(\mathcal{I}=(A,v)\) makes true \(\varphi\).

		If \(\varphi\) is closed, we say the structure \(A\) makes true \(\varphi\).(Since it does not matter what valuation it is.)

		If \(\varphi\) is closed, we say the structure \(A\) a model of \(\varphi\).

Theories

		Traditionally, its a set of axioms

		Here it consists of three parts

		Signature: \(\Sigma\)

		
		Axioms:

		We think this part is left for the people who implement solvers. Take INT theory as an example, since we have the plus sign in our signature (we just denote it as ADD, so that you know it is only a symbol, not the actual operation), we will have an axiom like ∀x:𝙸𝙽𝚃.y:𝙸𝙽𝚃.∃z:𝙸𝙽𝚃.𝙰𝙳𝙳(x,y,z)↔x+y=z. Therefore, our model (or structure) must contain the correct relations to map 𝙰𝙳𝙳 to the actual addition operation to satisfy this axiom.

Also, some theories like REAL include those axioms as plain text, like associativity, commutativity, etc.

		Models: A set of \(\Sigma\)-structures, all of which are models of the theory.

Logics

		Sublogic: it is a sublogic of SMT-LIB logic

		
		Restrictions:

		
		fixing a signature \(\Sigma\) and its theory \(\mathcal{T}\)

		restricting structures to the models of \(\mathcal{T}\)

		restricting input sentences as subset of \(\Sigma\)-sentences

 © Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down.png

_static/plus.png

help.html

 Navigation

 		
 index

 		SMTFrontEnd 0.1 documentation »

lalalala

 © Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment.png

builduse.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		SMTFrontEnd 0.1 documentation »

CVC4

Building

Since ANTLR has been largely changed, the building process listed here [http://church.cims.nyu.edu/wiki/User_Manual#Building_CVC4_from_source] should be changed a little bit.

		Download source code from official links [http://cvc4.cs.nyu.edu/builds/src/].

		Following the building instruction [http://church.cims.nyu.edu/wiki/User_Manual#Building_CVC4_from_source] to build the CVC4.

		Enter contrib directory, use get-antlr-3.4 to get ANTLR.

Note

The get-antlr-3.4 file should be changed.
All the hyperlinks including “antlr.org” should be changed to “antlr3.org”.

		Use ./configure --with-antlr-dir=`pwd`/antlr-3.4 ANTLR=`pwd`/antlr-3.4/bin/antlr3 to do configuration.

		Following the rest steps in the building instruction. If the configure reports missing something, just install them all.

		Make

Using

To invoke command line interface, just type

./cvc4 scriptfile.smt2

It will use the correct parser based on file extensions. If you want to test all the scripts in a folder, try this

ls | xargs -n 1 cvc4

AltErgo

Building

It depends largely on OCaml, so during configuration and making, if they report missing something, google that and install related packages. Most of them are OCaml related, and try to google ocamlfind, ocaml-core, typeconv for more information.

Using

To invoke command line interface, just type

./alt-ergo.opt scriptfile.smt2

to execute a SMT-LIB v2.0 script file. AltErgo will convert it into its native language, and then execute it. The result will be printed on the standard output.

To invoke GUI, just type

./altgr-ergo.opt scriptfile.smt2

to open it. If the file is successfully parsed and translated, then the GUI will open. Otherwise, it exits.

Note

It may take a very long time for either way to process the whole script file.

 © Copyright 2013, Hanwen Wu, Wenxin Feng.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

